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Abstract 

Mathematical models for decision support in complex management and engineering 

problems require both the explicit consideration of multiple, often conflicting, axes of 

evaluation of the merits of potential alternative solutions and the incorporation of elements 

dealing with the uncertain nature of the coefficients. Capturing this uncertainty through 

intervals is an interesting approach to model uncertainty because it does not impose stringent 

applicability conditions and enables the development of techniques well suited for an 

interactive application. This paper proposes an interactive approach to tackle multiple 

objective linear programming (MOLP) models with interval coefficients, which is based on 

the analysis of indifference regions of non-dominated solutions in the parametric space as a 

means to assess their robustness in the sense of “immunity” to unknown but bounded 

coefficients.  
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1. Introduction 

The main argument for justifying the need to consider models and methods for decision 

support taking explicitly into account multiple evaluations aspects in multiobjective 

mathematical programming is generally of “realistic” type. That is, the assessment of the 

merits of alternative solutions in real-world problems inherently involves multiple evaluation 

axis and models are required to reflect this reality as accurately as possible. Therefore, 

mathematical models for decision support become more representative of the actual decision 

situation whenever multiple objective functions, which are typically conflicting and 

incommensurable, are formulated explicitly, instead of aggregating evaluation aspects of 

distinct nature in a single function (usually a cost or benefit indicator) by transforming their 

impacts into monetary units. However, the relevance of the multiobjective approach goes 

beyond this “realistic” argument and it holds an intrinsic value-added role in the model 

building and the result analysis processes, supporting reflection and creativity in face of a 

larger universe of potential solutions since an optimal solution no longer exists (Roy, 1990; 

Bouyssou, 1993). 

Since a prominent optimal solution does not exist in multiple objective programming 

models, methods strive for the computation of non-dominated (efficient) solutions. These are 

the feasible solutions for which no other feasible solution exists strictly improving all 

objective function values; that is, the improvement of an objective function value can be 

obtained only by accepting to degrade at least another objective function value.  

Multiobjective models and methods provide the decision makers (DM) a framework for 

making more rational the comparisons within the (usually large) set of non-dominated 

solutions, offering a clearer perception of the conflicting aspects under evaluation and the 

capability to grasp the tradeoffs that must be made for the selection of a balanced solution, 

which can be accepted as the final satisfactory compromise solution to the decision process. 

In this framework the DM’s preferences play an important role, being understood as the 

construct the DM leans on for evaluating and eventually selecting that solution from the non-

dominated solution set. 

However, this preference structure is seldom clearly shaped. Therefore, the need arises to 

offer the DM a flexible decision aid environment through which he/she can experiment 

distinct search paths (giving privilege to one or another objective function, grasping trade-offs 
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between the functions in different parts of the search space, etc.). That is, an operational 

decision support framework is required capable of offering an interactive way of progressing 

in a selective way in acquiring and processing the information associated with newly 

computed solutions (rather than imposing a rigid and pre-specified sequence of computation 

and information exchange steps). In this context, the interactive process is understood as a 

learning process in which the DM can go through the non-dominated region in a progressive 

and selective way by using the information gathered so far to express new preference 

information to guide the ongoing search for new solutions. The DM intervenes in the solution 

search process by inputting information into the procedure, which in turn is used to guide the 

computation phase towards solutions that more closely correspond to his/her (evolutionary) 

preferences.  

Uncertainty is an intrinsic characteristic of real-world problems arising from multiple 

sources of distinct nature. Uncertainty emerges from the ever-increasing complexity of 

interactions within social, economical and technical systems, characterized by a fast pace of 

technological evolution, changes in market structures and new societal concerns. In a 

multiobjective setting, the elicitation of the DM’s preferences contributes to add a new 

uncertainty dimension to the decision-aid process. 

In this context of decision problems characterized by model and preference uncertainties, it 

is important to provide the DM with information enabling him/her to select robust solutions. 

The concept of robust solution broadly refers to some kind of “immunity” to data uncertainty 

(whatever it happens, the solution is good in most conditions and it is not very bad in none) or 

to an adaptive capability regarding an uncertain future (flexibility associated with keeping as 

many as possible options open given a decision previously made), guaranteeing an acceptable 

performance even under changing conditions (drifting from “nominal data”). 

Therefore, decision-aid models and, in particular, mathematical programming models must 

be able to capture both essential features of real-world problems: uncertainty and multiple 

objective functions. Methods must then be designed to tackle in a creative way these issues, in 

the operational framework of decision support tools. 

In the following sections, the main sources and types of uncertainty in the multiple 

objective mathematical programming models are briefly reviewed as well as the need to 

assess the robustness of the potential solutions. Interactive techniques based on the 

exploitation of the parametric diagram for three-objective linear programming problems are 
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proposed, in which the uncertainty associated with the model coefficients is modeled by 

means of intervals. 

 

2. Uncertainty in multiple objective mathematical programming models 

Since real-world problems are generally very complex, it is practically impossible that 

decision aid models, and mathematical programming models in particular, could capture all 

the relevant inter-related phenomena at stake, get through all the necessary information, and 

also account for the changes and/or hesitations associated with the DM’s preferences. For 

instance, non-linear relations the functional form of which is unknown can be made linear for 

the sake of tractability, since linear programming models are easier to tackle and other 

approaches may be equally disputable. This structural uncertainty is associated with the 

global knowledge about the system being modeled. Moreover, input data used to develop the 

model coefficients may suffer from imprecision, incompleteness or be subject to changes.  

The term uncertainty is used herein with respect to situations in which the potential 

outcomes cannot be described by using objectively known probability distributions, nor can 

they be estimated by subjective probabilities. In this sense, uncertainty is distinct from risk, 

this term referring to a situation in which the potential outcomes can be described in 

reasonably well-known probability distributions (Haimes, 2004). Therefore, uncertainty 

encompasses situations characterized by parameters whose values: are not known precisely 

(or only rough estimates are available), result from statistical data or measurement tools, are 

arbitrary, incomplete, not credible, contradictory (according to different sources) or 

controversial (according to different stakeholders), reflect the DM’s preference structure and 

values (which can evolve as more knowledge is acquired throughout the decision process or 

are difficult to elicit explicitly). The term parameter is herein used in a broad sense, 

encompassing both model coefficients and other technical devices required by the decision 

support methodology such as weights, thresholds, aspiration levels, reservation levels, etc. 

On one hand, the explicit consideration of multiple objective functions contributes to make 

models more adequate reflecting (a broader view of) reality and the need to weigh trade-offs 

in the search for a compromise solution. On the other hand, it adds a new uncertainty 

dimension since the DM’s preferences are required and used in the decision-aid process. 

These preferences are often unclear, ambiguous and unstructured. This issue gains more 

importance in a context in which it is unworkable to compute all non-dominated solutions and 

the DM’s preferences play a key role in guiding the search. 
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Therefore, it is necessary to provide the DM methodologies and computer tools, which can 

assist him/her in assessing the robustness of solutions regarding the uncertainty, arising from 

several sources and of different types, underlying the decision process. In this way the 

interactive decision process can capture the changes in the input data (studying different 

discrete scenarios or the evolution of a given scenario), the redefinition of the model 

(incorporating new elements of reality through the consideration of new decision variables, 

constraints and/or objective functions), and also the evolutionary nature of his/her preferences 

(testing, for example, his/her judgments that reveal more influent in guiding the interactive 

search process towards certain regions of the non-dominated solution set). Having in mind the 

constructive nature of the decision support process, a methodological and operational 

framework is proposed that enables to take into account the uncertainties associated with 

imprecisely known model coefficients and the elicitation of preferences.  

Interval programming is an interesting approach to model uncertainty regarding the 

coefficients of mathematical programming models, mainly because it does not impose 

stringent applicability conditions. The underlying assumption is that the actual coefficients are 

not generally known with precision. They derive from estimates by experts, subjective 

judgments in complex environments, imprecise measurements, etc. However, it is possible in 

most situations to specify with a reasonable degree of accuracy ranges of admissible values 

for the coefficients, but it is difficult to state a reliable probability distribution for this 

variation. That is, each coefficient is a closed interval rather than a single real value (a region 

the coefficients can possibly take). An illustrated overview of interval programming in MOLP 

models can be seen in Oliveira and Antunes (2007). 

Other approaches to model uncertainty in decision support models involve the construction 

of scenarios, stochastic programming, fuzzy programming, sensitivity analysis, etc. 

In the context of mathematical programming models, scenarios (embodying different sets 

of assumptions of plausible future states) can be made operational by the specification of 

coefficients (for instance, within intervals) for each scenario. This generally leads to a high 

number of scenarios (due, for instance, to the possible combinations resulting from the 

simultaneous and independent variations of coefficients) and it is necessary to design a form 

of pruning or aggregating distinct “patterns”. In this case it is expected that solutions selected 

as potential outcomes of the decision process are robust regarding the plausible conditions in 

which the system can be encountered in the future (that is, across scenarios). 
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Sensitivity analyses are well-known techniques in mathematical programming providing 

information on the behavior of optimal solutions (in single objective optimization) and the 

range of variation of the model coefficients such that the optimal solution is maintained. More 

precisely, for example in linear programming, sensitivity analysis computes the ranges in 

which the original model coefficients (or some perturbation parameters) can change such that 

the optimal basis remains optimal for the “perturbed” problem. This concept cannot be 

translated in a straightforward way to a MOLP context since several non-dominated solutions 

exist (even if only basic solutions are considered) and the DM’s preferences also play a role 

(that is, to analyze all solutions would not be an worthwhile effort since most of them would 

be of no interest for the DM). Furthermore, sensitivity analysis is a “post-identification“ 

technique, in the sense that it enables to analyze the behavior of a given (optimal or non-

dominated) solution after it is computed, but it is not of help to be integrated in the search 

process to generate robust solutions. 

The main concept in stochastic programming is the one of recourse, in the sense of a 

capability to make corrective measures in face of a random event. A typical approach in 

stochastic programming consists in defining scenarios (conditions that can be identified and 

taken as representative of the state in which the system can be identified in the future) to 

which probabilities are assigned based on postulated or empirically verified distributions. A 

formulation of a linear stochastic programming with two periods consists in the minimization 

of the cost associated with the decision to be made in the first period (before the realization of 

uncertain coefficients) plus the expected cost of the recourse decision in the second period. 

The decision variable values in the second period may be interpreted as the operational 

recourse (corrective) measures against the infeasibilities arising from a particular realization 

of uncertainty. 

The modeling of data uncertainty can also be made by using concepts of fuzzy set theory. 

Initially, the use of the fuzzy set theory in the framework of mathematical programming 

problems aimed at making less rigid the notion of constraint by giving the same nature to 

objective functions and constraints and making flexible (in the sense of gradual) the 

inequality, or equality, between both sides of the constraints and objective functions (in this 

case requiring the specification of a desired level to be attained).  It then evolved in a sense 

similar to stochastic programming to model the imprecise nature of the coefficients of 

mathematical programming models by using possibilistic distributions (assigning a 
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membership function to the fuzzy model coefficients). As a set, an interval is a fuzzy set with 

a rectangular membership function. 

 

3. Robust solutions in MOLP using interval programming 

It must be recognized that DMs do not expect from the decision support process (generally 

mediated by an analyst with technical and methodological knowledge and sensible towards 

the problem at hand) a “ready-to-use” solution but rather help in a process of gathering, in a 

constructive manner, information which can be used to make well-informed decisions, acting 

as anchors to the selection of a course of action or just to pave the way for further reflection 

about the problem and also his/her own preferences. Multiple objective models play a value-

added role by widening the spectrum of potential outcomes (that is, a true decision problem is 

at stake and not just the decision on accepting or rejecting an “optimal” solution). Therefore, 

it is necessary that the potential solutions could be compatible, in the sense of reachable, to a 

set of acceptable combinations for the input values.  

In the context of optimization problems Mulvey et al. (1995) understand robustness in the 

sense of closeness to feasibility and to optimality across the scenario universe. The aim is to 

compute solutions that are fairly insensitive to any scenario realization.  Two robustness 

measures are defined in Kouvelis and Yu (1997) in the context of discrete optimization 

problems: absolute robustness - the worst-case performance (minimax); and the robust 

deviation - worst case performance difference between the given solution and the best 

solution (minimax regret). These measures are conservative (pessimistic) ones. Bertsimas and 

Sim (2004) proposed a robust approach to linear programming problems with uncertain data, 

adjusting the levels of conservatism of robust solutions in terms of probabilistic bounds of 

constraint violations. Vincke (1999) proposed an operational formalism to define the concepts 

of robust solutions and robust methods in decision support. 

Let us consider the multiple objective linear programming (MOLP) problem 

“max” f(x) = C x 

s. t.   x � X 

X = { x � �n | A x = b, x ≥ 0, b � �m } 

All model coefficients (the objective function matrix C, the technological matrix A, and 

the right-hand side vector b) are closed intervals defined by (an ordered pair) lower (left) and 

upper (right) bounds of the coefficient. The interval may also be denoted by its center 

(typically the nominal values) and width (which can be defined by a percentage variation 
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around the nominal value). An interval vector is a vector whose components are interval 

numbers. A precisely known coefficient has equal left and right limits. 

It is well known that non-dominated basic solutions to the MOLP problem can be obtained 

by optimizing a weighted-sum scalarizing function: 

max  λ1 f1(x) + λ2 f2(x) + … + λp fp(x) 

s. t.  x � X 

 λ � Λ ≡ {λ : λ ∈ ℜp, 
k=1

p∑ λk=1, λk≥0, k=1,2,...,p}  

For computational purposes λk > 0, in order to avoid weakly non-dominated solutions. 

A weighting vector λ=(λ1, λ2,…, λp) can be represented as a point on the parametric 

diagram Λ. This is a geometrical (p-1)-dimensional simplex in a p-dimensional Euclidean 

weight space (p being the number of objective functions). This parametric diagram is 

especially interesting for displaying useful information to the DM in problems with three 

objective functions (p=3). The parametric diagram performs the role of a consistent means in 

which it is graphically displayed information regarding the solutions computed and used by 

the DM/analyst to provide indications about the regions in which the search shall proceed. 

The aim is to provide the DM information in a way that supports the emergence of insights in 

the progressive search for potential solutions to the problem (Clímaco and Antunes; 1989; 

Antunes and Clímaco, 1992). 

The decomposition of the parametric diagram is used as an operational means to convey 

information to the DM. The graphical display (for p=3) of the set of weights that leads to each 

non-dominated (basic) solution can be achieved through the decomposition of the parametric 

diagram. From the simplex tableau corresponding to a non-dominated basic solution to the 

weighted-sum problem, the corresponding set of weights is given by λT W ≥ 0, where 

W=CBB-1
N-CN is the reduced cost matrix. B (CB) and N (CN) are the sub-matrices of A (C) 

corresponding to the basic and non-basic variables, respectively. 

The region comprising the set of weights corresponding to a non-dominated basic solution 

k, defined by Λk ≡ {λT W ≥ 0, λ � Λ}, is called indifference region. The DM can thus be 

indifferent to all the combinations of weights within this region, because they lead to the same 

non-dominated solution. The boundaries between two contiguous indifference regions 

represent the non-basic efficient variables (those that when introduced into the basis lead to an 

adjacent non-dominated vertex through a non-dominated edge). A common boundary 

between two indifference regions means that the corresponding non-dominated solutions are 

connected by a non-dominated edge. If a point λ belongs to several indifference regions this 
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means that they correspond to non-dominated solutions lying on the same face (Clímaco and 

Antunes; 1989; Antunes and Clímaco, 1992).  

The analysis of the parametric diagram is thus a valuable decision aid tool in "learning" the 

shape of the non-dominated solution set, and consequently in grasping the potential solutions 

to the MOLP problem. The decomposition of the parametric diagram as a means to make a 

progressive and selective learning of the non-dominated solution set and evaluate the stability 

of selected non-dominated solutions to changes in the coefficients is exploited in (Clímaco 

and Antunes; 1989; Antunes and Clímaco, 1992; Antunes and Clímaco, 2000). 

The process begins by offering the DM the possibility of freely compute non-dominated 

solutions using the nominal values (all coefficients in the midpoint of their intervals). In 

particular, the non-dominated solutions that individually optimize each objective function are 

computed as well as some well-dispersed solutions with the aim of having a first overview of 

the non-dominated solution set (figs. 1a-1b). Due to the small size of this example (3 

objective functions, 4 decision variables and 4 constraints) we opted to compute all basic 

(vertex) non-dominated solutions for illustrative purposes only. It must be noticed that this 

approach is generally intended to avoid an exhaustive search by recognizing that the 

knowledge about the solutions computed so far (and, in particular, their objective function 

values) enables to decide whether it is still necessary to compute solutions using weight sets 

belonging to certain regions of the parametric diagram not yet filled.  

In this situation 8 vertex non-dominated solutions exist (note that solutions 2 and 8 are 

alternative optima to objective function f2(x)), defining 3 non-dominated faces (1-5-6, 5-6-4-

7-2, and 7-8-2; note that solutions lying on the face defined by solutions 3-4-7 are dominated 

by the solutions on the non-dominated edges 3-4- and 4-7); see also table 1.  
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Figure 1: Decomposition of the parametric diagram with all coefficients in the midpoint of the 

intervals (all figures are screen copies generated by the TRIMAP package) 
 

 
Figure 1b: Projection of the objective function space corresponding to the decomposition of the 

parametric diagram in fig. 1a  
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(for instance, in 8/25.0, 8 denotes the identification of the solution and 25.0 is the value of f3) 

 

Table 1 – Basic (vertex) non-dominated solutions with all the coefficients in the midpoint of the 
intervals (in the column of the basic variables xB, si stands for the slack associated with constraint i) 

Solution f1 f2 f3 xB 
1 66 30 -12 x1, x3, s3 
2 51 50 4 x1, x4, s1 
3 15 -15 75 x2, s1, s3 
4 29 3 73 x2, x3, s1 
5 55.5 47.5 2 x1, x3, x4 
6 48.5 19.5 37 x1, x2, x3 
7 18.333 15 71.667 x2, x4, s1 
8 12.5 50 25 x4, s1, s2 

 

The uncertainty associated with the model coefficients is then taken into account by 

computing solutions using coefficients that are randomly generated within their intervals. The 

indifference regions associated with all (vertex) non-dominated solutions already computed 

are the starting point. Weighted-sum scalarizing functions are then constructed using random 

coefficients within the intervals and the weight vectors are also randomly generated within the 

indifference region for the “nominal” (midpoint coefficients) situation (the one described in 

figs. 1a-b and table 1). As a result of this simulation, the robustness of the solution regarding 

coefficient changes is assessed taking into account both the frequency the same basic non-

dominated solution (optimal basis to the scalarizing problem) is obtained and the degree of 

superposition of the corresponding indifference regions in the parametric diagram. 

Using the interactive visual feedback provided by the parametric diagram the changes 

regarding the “nominal” (midpoint) coefficients can be analyzed, for an instantiation of the 

interval coefficients and the weights used in the scalarizing problem, as displayed in figs. 2a-b 

and table 2. 

Note that with these particular random coefficients the former solutions 2, 4, 6 and 8 (in 

fig. 1) are no longer non-dominated (they do not have a corresponding indifference region in 

the parametric diagram), which can be perceived as an indication of being less robust 

regarding coefficient changes. In this particular coefficient realization, 7 vertex non-

dominated solutions and 3 non-dominated faces (1-6-4-5, 2-4-5, and 3-7-4-6) exist. Other 

conclusions can be drawn, such as the non-dominated solutions that optimize individually 

each objective function (solutions 1, 2 and 3 in figs. 2a-b and table 2) are now unique (i.e., no 

alternative solutions exist for any objective function). For the situations displayed in figs. 1 
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and 2, the degree of superposition is 1 for the solutions 1 and 3, but is less than 1 for solutions 

5 and 7. 

 

 
Figure 2a: Decomposition of the parametric diagram (random coefficients within of the intervals)  

 



Rio´s International Journal on Sciences of Industrial and Systems Engineering and Management 
Editor-in-Chief: Dr. Heitor Luiz Murat de Meirelles Quintella, Universidade do Estado do Rio de Janeiro 
 

 

 
Figure 2b: Projection of the objective function space corresponding to the decomposition of the 

parametric diagram in fig. 2a  
 

Table 2 – Basic (vertex) non-dominated solutions with random coefficients within the intervals and 
random weights within the “nominal” indifference regions 

Solution f1 f2 f3 xB Same as in 
table 1 

1 52.765 34.335 -6.658 x1, x3, s3 1 
2 25.120 48.095 15.490 x3, x4, s2 --- 
3 26.808 -22.181 79.509 x2, s1, s3 3 
4 38.367 16.256 68.353 x2, x3, x4 --- 
5 49.563 43.646 -2.884 x1, x3, x4 5 
6 39.195 12.005 69.163 x2, x3, s3 --- 
7 30.549 -1.310 73.962 x2, x4, s1 7 

 

This type of analysis can be done for the most “favorable”/“unfavorable” situations, that is 

with the coefficients in the interval endpoints that favor/disfavor the best/worst objective 

functions values (matrix C coefficients in their upper/lower values in functions to be 

maximized, and matrix A coefficients in their lower/upper values and vector b coefficients in 

their upper/lower values in ≤ constraints to “enlarge”/”shrink” the feasible region).  
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Another possibility to assess the solution robustness is to consider the centroid of the 

“nominal” indifference region (fig. 1a) as the most stable set of weights leading to that 

solution. Then, this weight vector would be constant (not requiring random generation of 

weights) and the associated solution would be assigned a robustness degree based just on the 

frequency the same basic solution is obtained by optimizing a weighted-sum scalarizing 

function with that set of weights in a simulation run using random coefficients with the 

intervals. 

This approach based on randomly generated coefficients within the intervals (as well as 

weight vectors for the scalarizing problems to be solved) prevents the drawbacks of other 

approaches that are based on the extreme rays of the objective functions. In this case, if the 

gradients of the objective functions are highly correlated, the scope of the search may be 

reduced and the number and diversity of solutions that can be computed is impaired.  

 

4. Conclusions 

Interval programming is an interesting approach to model uncertainty because it just 

requires the specification of acceptable lower and upper bounds for the coefficients (that is, 

these are unknown but bounded). In this paper some possibilities have been suggested for 

using the information associated with indifference regions in the parametric space (related to 

basic non-dominated solutions) and random coefficients generated within intervals 

(representing the uncertainty underlying model coefficients in MOLP problems) to assess the 

robustness of non-dominated solutions.  

As the models coefficients change within the intervals specified, solutions can become 

non-dominated or even infeasible. The robustness of each non-dominated solution is 

appraised regarding the nominal situation (interval midpoint coefficients) based on the 

frequency of appearance of non-dominated solutions, also taking into account the degree of 

super-position between the nominal indifference regions and the indifference regions resulting 

from randomly generated coefficients within the intervals. 
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